SOLVING A LOGISTIC PROBLEM BY DEVELOPING AN OPTIMAL PLAN
Abstract
The article examines the problem of optimizing logistics processes using the task of developing an optimal plan. A mathematical model of the problem of developing an optimal delivery route has been developed, which is reduced to the classical traveling salesman problem. The proposed model allows taking into account various constraints and optimization criteria typical for real problems. Based on the developed model, a graph was constructed that reflects the structure of the task of delivering windows around the city. To find the optimal route, the MS Excel program was used. The obtained result shows the effectiveness of the proposed approach and its potential for application in other areas where the problem of route optimization is relevant. The conducted research confirms the relevance of the task of creating optimal routes for solving logistics problems. The proposed mathematical model and solution algorithm can be effectively used to optimize delivery processes in various industries. However, there are prospects for further research: expanding the model to take into account dynamic factors such as changes in demand, road conditions and other unpredictable events; integration with geoinformation monitoring systems to obtain more accurate data on distances and travel times; development of interactive web interfaces for convenient use of the developed algorithm by logistics companies.
References
Taha Hamdy A. (2007) Operations research. Upper Saddle River, New Jersey: Pearson Prentice Hall.
Aho A., Hopcroft J. & Ullman J. (1976). Тне Desion and Analysis of Computer Aloorithms. Addison-Wesley Publishing Company.
Gill P. E., Murray W., Wright M. H. (1981) Practical Optimization, Academic, London, U.K.
Dymova H. O. (2020). Metody i modeli uporyadkuvannya eksperymental’noyi informatsiyi dlya identyfikatsiyi i prohnozuvannya stanu bezperervnykh protsesiv: monohrafiya [Methods and models for ordering experimental information for identifying and predicting the state of continuous processes]. Kherson: Publishing house FOP Vyshemyrskyy VS. (in Ukrainian)
Dymova H., & Larchenko O. (2021). Modeli i metody intelektualʹnoho analizu danykh: navchalʹnyy posibnyk [Models and methods of intellectual data analysis: tutorial] Kherson: Publishing house FOP Vyshemyrskyy VS. (in Ukrainian)
Dymova H., & Larchenko O. (2023). Sensitivity analysis of dynamic systems models. International security studios: managerial, economic, technical, legal, environmental, informative and psychological aspects. International collective monograph. Georgian Aviation University. Tbilisi, Georgia, pp. 283-298.
Taha Hamdy A. Operations research. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2007. 813 p.
Aho A., Hopcroft J. & Ullman J. Тне Desion and Analysis of Computer Aloorithms. Addison-Wesley Publishing Company. 1976. 536 p.
Gill P.E., Murray W., Wright M. H. Practical Optimization, Academic, London, U.K., 1981. 570 р.
Димова, Г.О. Методи і моделі упорядкування експериментальної інформації для ідентифікації і прогнозування стану безперервних процесів: монографія. Херсон : Книжкове видавництво ПП Вишемирський В.С., 2020. 174 с.
Димова Г.О., Ларченко О.В. Моделі і методи інтелектуального аналізу даних: навчальний посібник. Херсон : Книжкове видавництво ФОП Вишемирський В.С., 2021. 142 с.
Dymova H., Larchenko O. Sensitivity analysis of dynamic systems models. International security studios: managerial, economic, technical, legal, environmental, informative and psychological aspects. International collective monograph. Georgian Aviation University. Tbilisi, Georgia, 2023. P. 283-298.