CLASSIFICATION OF SYSTEM STATES BY VECTOR PARAMETERS
Abstract
The aim of the article is to study the algorithms for classifying the states of the modeled economic system according to the vector of parameters. The economy is seen as an emergent system for which the general principles of existence and development of complex systems are valid. It is the property of emergence that can cause the structural heterogeneity of the mathematical model of the system, which in turn is the result of abrupt changes in parameters, uncertainty of the functional relationship between exogenous and endogenous model variables. The adequacy of mathematical models of such problems is determined primarily by the presence of structured input information – numerical, probabilistic, descriptive estimates of the interaction of exogenous and endogenous factors of different nature, which can be formalized mathematically as model parameters. An analytical algorithm for classifying the states of a complex system identified by a vector of parameters is described. The algorithm for determining the state of a complex system is based on the principles of discriminant analysis. The set of system classes is considered as a set of multidimensional random variables determined to the nearest parameter values. The basis for the application of discriminant analysis is the assumption of a normal distribution of a multidimensional random variable – a vector of system state parameters. In practical calculations, the classification error is interpreted as the average classification error, which can be represented as a matrix of losses (fines, risks), due to incorrect classification of the system. The average value of the classification error can be determined by the Bayesian decision rule, one of the intermediate results of which is to determine statistical estimates of a priori probabilities of belonging of the studied system to each class. The obtained estimates are used in the tasks of optimizing decision-making in conditions of potential economic risks. The Bayesian approach is not a new algorithm for optimal classification, but its application to applied modeling problems requires analytical adaptation.
References
Геселева Н.В., Заріцька Н.М. Емерджентні властивості системи. Бізнес-Інформ. 2013. № 7. С. 93–97.
Айвазян С.А. Многомерный статистический анализ в социально-экономических исследованиях. Экономика и математические методы. 1977. Т. XIII. Вып. 5. С. 968–983. URL: http://www.cemi.rssi.ru/emm/files/1977-05-Aivazian_SA.pdf (дата звернення: 08.01.2022).
Зотеев В.Е. Численный метод нелинейного оценивания на основе разностных уравнений. Вестник СГТУ. Серия: Физико-математические науки. 2018. Т. 22. № 4. С. 669–701. URL: http://www.mathnet.ru/links/9bac681bdd2fcc9fd05ddf7d0aed7cd9/vsgtu1643.pdf (дата звернення: 08.01.2022).
Жлуктенко В.І., Бєгун А.В. Стохастичні моделі в економіці : монографія. Київ : КНЕУ, 2005. 352 с.
Верченко П.І. Багатокритеріальність і динаміка економічного ризику (моделі та методи) : монографія. Київ : КНЕУ, 2006. 272 с.
Спільник І.В., Ярощук О.В. Принцип системності в аналітичних дослідженнях. Економічний аналіз. 2018. Т. 28. № 2. С. 182–190.
Айвазян С.А., Березняцкий А.Н., Бродский Б.Е., Дарховский Б.С. Статистический анализ моделей с переменной структурой. Прикладная эконометрика. Теория и методология. 2015. № 39 (3). С. 84–105. URL: https://cyberleninka.ru/article/n/statisticheskiy-analiz-modeley-s-peremennoy-strukturoy/viewer (дата звернення: 08.01.2022).
Дивак М.П., Порплиця Н.П., Дивак Т.М. Ідентифікація дискретних моделей динамічних систем з інтервальними даними : монографія. Тернопіль : ВПЦ «Економічна думка ТНЕУ», 2018. 220 с.
Debela I.M. Research of optimization management models in conditions of uncertainty and risks. Global aspects of national economy development in the conditions of transformational changes. Lviv ; Toruń : Liha-Pres, 2021. Р. 115–127.
Милюгин В.И., Васильков М.Е. Непараметрический анализ стохастических систем с нелинейной функциональной неоднородностью. Прикладная эконометрика. Теория и методология. 2011. № 2 (22). С. 78–92. URL: http://pe.cemi.rssi.ru/pe_2011_2_78-92.pdf (дата звернення: 13.01.2022).
Дебела І.М. Байєсовський метод оцінки альтернативних рішень. Таврійський науковий вісник. Серія: Економіка. 2021. № 8. С. 76–81.
Geseleva N.V., Zaritskaya N.M. (2013) Emerdzhentni vlastyvosti systemy [Emergent proper¬ties of the system]. Business information, no. 7, pp. 93–97.
Aivazian S.А. (1977) Mnogomernyy statisticheskiy analiz v sotsialno-ekonomicheskikh issledovaniyakh [Multivariate statistical analysis in socio-economic research]. Economics and math¬ematical methods, vol. XIII, no. 5, pp. 968–983. Retrieved from: http://www.cemi.rssi.ru/emm/ files/1977-05-Aivazian_SA.pdf (accessed 08 January 2022).
Zoteev V.E. (2018) Chislennyy metod nelineynogo otsenivaniya na osnove raznostnykh uravneniy [Numerical Method for Nonlinear Estimation Based on Difference Equations]. Bulletin of SSTU. Series: Phys.-Math. Sciences, vol. 22, no. 4, pp. 669–701. Retrieved from: http://www.mathnet.ru/ links/9bac681bdd2fcc9fd05ddf7d0aed7cd9/vsgtu1643.pdf (accessed 08 January 2022).
Zhluktenko V.I., Begun A.V. (2005) Stokhastychni modeli v ekonomici [Stochastic models in economics]. Kyiv: KNEU. (in Ukrainian)
Verchenko P.I. (2006) Baghatokryterialjnistj i dynamika ekonomichnogho ryzyku (modeli ta metody) [Multicriteria and dynamics of economic risk (models and methods)]. Kyiv: KNEU. (in Ukrainian)
Spiljnyk I.V., Jaroshhuk O.V. (2018) Pryncyp systemnosti v analitychnykh doslidzhennjakh [The principle of systematicity in analytical research]. Economic analysis, vol. 28, no. 2, pp. 182–190.
Aivazian S.А., Bereznyatskiy A.N., Brodskiy B.E., Darkhovskiy B.S. (2015) Statistich¬eskiy analiz modeley s peremennoy strukturoy [Statistical analysis of models with variable struc¬ture]. Applied Econometrics. Theory and methodology, no. 39(3), pp. 84–105. Retrieved from: https://cyberleninka.ru/article/n/statisticheskiy-analiz-modeley-s-peremennoy-strukturoy/viewer (accessed 08 January 2022).
Dyvak M.P., Porplycja N.P., Dyvak T.M. (2018) Identyfikacija dyskretnykh modelej dynam¬ichnykh system z intervaljnymy danymy [Identification of discrete models of dynamic systems with interval data]. Ternopil: Economic opinion of TNEU. (in Ukrainian)
Debela I.M. (2021) Doslidzhennja optymizacijnykh modelej upravlinnja v umovakh nevyz¬nachenosti ta ryzykiv [Research of optimization management models in conditions of uncertainty and risks]. Ghlobaljni aspekty rozvytku nacionaljnoji ekonomiky v umovakh transformacijnykh zmin [Global aspets of national economy development in the conditions of transformational changes]. Lviv; Toruń: Liha-Pres, pp. 115–127.
Milyugin V.I., Vasilkov M.E. (2011) Neparametricheskiy analiz stokhasticheskikh sistem s nelineynoy funktsionalnoy neodnorodnostyu [Nonparametric Analysis of Stochastic Systems with Nonlinear Functional Heterogeneity]. Applied Econometrics. Theory and methodology, no. 2(22), pp. 78–92. Retrieved from: http://pe.cemi.rssi.ru/pe_2011_2_78-92.pdf (accessed 13 January 2022).
Debela I.M. (2021) Bajjesovsjkyj metod ocinky aljternatyvnykh rishenj [Bayesian method of evaluating alternative solutions]. Taurian Scientific Bulletin. Series: Economics, no. 8, pp. 76–81.