MATHEMATICAL MODEL OF THE OPTIMAL MARKET OF MANY GOODS

Keywords: mathematical model, demand function, supply function, equilibrium, conditionally optimal price, сconditionally maximum profit

Abstract

A nonlinear dynamic mathematical model of the free market for many goods is considered. In the considered model of the inertial market of both one and many goods with a fixed demand line, it is assumed that the sales volume of each product at each step (interval) of discrete time is determined by the minimum of two quantities: the volume of goods supplied to the market (supply of goods) and the volume of demand. At the same time, there are 3 zones of supply volumes: a zone of shortage of goods, a zone of market overstocking and a zone of dynamic market equilibrium. In the first zone, demand exceeds supply, so that the seller receives less profit. For each of the zones, a detailed analysis of the behavior of the supply and demand functions was carried out. Since the sales volumes depend on the price of the goods and the ratio of supply and demand, each zone has its own conditionally optimal prices of the goods, which depend on the level of supply in each zone, and ensure the maximum profit of the seller for each fixed volume of supply of the goods. It is shown that the state of the market for many (n> 1) goods is characterized by the indicated three possible zones for each of the goods, which leads to 3n possible zones of the market state. Due to the constraints of the type of inequalities inherent in the considered mathematical model of the market, the target function of the market (the total profit of the seller) is a piecewise differentiable function of the vectors of prices and offers of goods with discontinuities in the gradient of this functions on the lines of equality of supply and demand, that is, on the division lines of zones 1 and 2 (in zone 3), which makes it difficult to solve the problem of vector optimization of this function. It is not possible to construct an analytical solution to the problem for each of the 3n zones. In this regard, an original approach to a unified representation of an objective piecewise differentiable function through a system of indicator matrix predicate functions is proposed, which made it possible to represent the objective function of many variables as conditionally smooth, everywhere differentiable for hypothetical values of predicate functions, and obtain an analytical solution to the problem of multidimensional optimization.

References

Walras L. Elements d'Economie Politique Pure. Revue de Théologie et de Philosophie et Compte-rendu des Principales Publications Scientifiques. 1874. Vol. 7. P. 628–632. URL: https://www.jstor.org/stable/44346456?seq =1#metadata_info_tab_contents.

Arrow K.J., Debreu G. Existence of an Equilibrium for a Competitive Economy. Econometrica. 1954. Vol. 22. Issue 3. P. 265–290.

Козак Ю.Г., Мацкул В.М. Математичні методи та моделі для магістрів з економіки. Практичні застосування : навчальний посібник. Київ : Центр учбової літератури, 2017. 254 с.

Білоусова Т.П., Лі В.Е. Математичне моделювання рівноваги функцій попиту та пропозиції. Сучасна молодь у світі інформаційних технологій : матеріали IІ Всеукр. наук.-практ. Інтернет-конф. молодих вчених та здобувачів вищої освіти, присвяченої Дню науки, м. Херсон,

травня 2021 р. Херсон : ФОП Вишемирський В.С., 2021. С. 152–155.

Поддубный В.В., Романович О.В. Рынок с фиксированной линией спроса как оптимальная система. ФАМЭТ’2011 : труды Х Международной конференции, г. Красноярск, 23–24 апреля 2011 г. Красноярск : КГТЭИ – СФУ, 2011. С. 318–323.

Поддубный В.В., Романович О.В. Рестриктивная динамическая модель инерционного рынка с оптимальной поставкой товара на рынок в условиях запаздывания. Вестник Томского государственного университета. УВТИ. 2011. № 4(17). С. 16–24.

Вітлінській В.В. Моделювання економіки : навчальний посібник. Київ : КНЕУ, 2003. 408 с.

O'Sullivan, Arthur; Sheffrin, Steven M. (2003). Economics: Principles in Action. Upper Saddle River, New Jersey 07458: Pearson Prentice Hall. p. 550. ISBN 0-13-063085-3.

Білоусова Т. Математична модель оптимального ринку. Таврійський науковий вісник. Серія «Економіка». 2020. № 8. С. 70–75. URL: https://doi.org/10.32851/2708-0366/2021.8.10.

Білоусова Т. Математична модель оптимального ринку одного товару. Таврійський науковий вісник. Серія «Економіка». 2021. № 9. С. 101–108. URL: https://doi.org/10.32851/2708-0366/2021.9.13.

Walras L. (1874) Elements d'Economie Politique Pure. Revue de Théologie et de Philosophie et Compte-rendu des Principales Publications Scientifiques. 7, 628–632. Retrieved from https://www.jstor.org/stable/44346456?seq =1#metadata_info_tab_contents

Arrow K.J., Debreu G. (1954) Existence of an equilibrium for a competitive economy. Econometrica. 22, 3, 265–290.

Kozak Yu.H., Matskul V.M. (2017) Matematychni metody ta modeli dlia mahistriv z ekonomiky. Praktychni zastosuvannia: Navch. posib. [Mathematical Methods and Models for Masters in Economics. Practical Applications: a textbook]. K.: Tsentr uchbovoi literatury.

Bilousova T.P., Li V.E. (2021) Matematychne modeliuvannia rivnovahy funktsii popytu ta propozytsii. [Mathematical Modeling of the Balance of Supply and Demand Functions]. Suchasna molod v sviti informatsiinykh tekhnolohii: materialy II Vseukr. nauk.-prakt. internet-konf. molodykh vchenykh ta zdobuvachiv vyshchoi osvity, prysviachenoi Dniu nauky (Kherson, 14 May, 2021). Kherson: Knyzhkove vydavnytstvo FOP Vyshemyrskyi V. S. pp. 152–155.

Poddubnyiy V.V., Romanovich O.V. (2011) Ryinok s fiksirovannoy liniey sprosa kak optimalnaya sistema. [Market with a Fixed Demand Line as an Optimal System]. FAMET’2011: Trudyi H Mezhdunarodnoy konferentsii. (Krasnoyarsk, 23–24 April, 2011). Krasnoyarsk: KGTEI – SFU. pp. 318–323.

Poddubnyiy V.V., Romanovich O.V. (2011) Restriktivnaya dinamicheskaya model inertsionnogo ryinka s optimalnoy postavkoy tovara na ryinok v usloviyah zapazdyivaniya. [Restrictive Dynamic Model of an Inertial Market with Optimal Delivery of Goods to the Market in Lagging Conditions]. Vestnik Tomskogo gosudarstvennogo universiteta. UVTI. 4 (17), 16–24.

Vitlinskii V.V. (2003) Modeliuvannia ekonomiky: navch. posibnyk. [Modeling the Economy: a Textbook]. K.: KNEU. (in Ukrainian)

O'Sullivan, Arthur; Sheffrin, Steven M. (2003). Economics: Principles in Action. Upper Saddle River, New Jersey 07458: Pearson Prentice Hall. p. 550. ISBN 0-13-063085-3.

Bilousova T.P. (2021) Matematychna model optymalnoho rynku . [Mathematical model of the optimal market ]. Taurian Scientific Bulletin. Series: Economics, vol. 8, pp.70-75.

Bilousova T.P. ( 2021) Matematychna model optymalnoho rynku odnoho tovaru. [Mathematical model of the optimal market of jne goods ]. Taurian Scientific Bulletin. Series: Economics, vol. 9, pp.101-108.

Article views: 130
PDF Downloads: 88
Published
2021-12-30
How to Cite
Bilousova, T. (2021). MATHEMATICAL MODEL OF THE OPTIMAL MARKET OF MANY GOODS. Taurida Scientific Herald. Series: Economics, (10), 135-142. https://doi.org/10.32851/2708-0366/2021.10.18
Section
MATHEMATICAL METHODS, MODELS AND INFORMATION TECHNOLOGIES IN ECONOMY