GENERAL ECONOMIC EQUILIBRIUM MODELS

Keywords: сlassification, general economic equilibrium, applied general equilibrium, computable general equilibrium, dynamic stochastic general equilibrium

Abstract

The article examines the possibilities and limitations of empirical models of general economic equilibrium and makes their classification. Computable general equilibrium models are divided into two groups: the first group is based on the equilibrium price model (G. Scarf's approach), the second is based on a multi-sectoral model of economic growth (L. Johansen's approach). Dynamic stochastic general equilibrium models are also divided into two groups: the first group is based on the model of the real business cycle (the approach of F. Kydland and E. Prescott), the second is based on the model of various behavior of firms in conditions monopolistic competition (the approach of J. Rotemberg and M. Woodford). Within each group, empirical models were studied according to the following criteria: the scale of the economy, its openness; application for current and future assessments; socio-economic phenomenon under study.

References

Walras L. (1874) Elements d'Economie Politique Pure. Revue de Théologie et de Philosophie et Compte-rendu des Principales Publications Scientifiques, no. 7, pp. 628–632. Available at: https://www.jstor.org/stable/44346456?seq =1#metadata_info_tab_contents

Arrow K. J., Debreu G. (1954) Existence of an equilibrium for a competitive economy. Econometrica. no. 22 (3), pp. 265–290.

Kozak Yu. H. Matskul V. M. (2017) Matematychni metody ta modeli dlia mahistriv z ekonomiky. Praktychni zastosuvannia: Navch. posib. [Mathematical Methods and Models for Masters in Economics. Practical Applications: a textbook]. Kyiv: Tsentr uchbovoi literatury.

Vitlinskii V. V. (2003) Modeliuvannia ekonomiky: navchalnyi posibnyk. Kyiv: KNEU, 408 p.

Bilousova T. P. (2021) Matematychna model optymalnoho rynku . [Mathematical model of the optimal market]. Taurian Scientific Bulletin. Series: Economics, vol. 8, pp. 70–75.

Bilousova T. P. (2021) Matematychna model optymalnoho rynku odnoho tovaru. [Mathematical model of the optimal market of jne goods ]. Taurian Scientific Bulletin. Series: Economics, vol. 9, pp. 101–108.

Bilousova T. P. (2021) Matematychna model optymalnoho rynku bahatokh tovariv. [Mathematical model of the optimal market of many goods]. Taurian Scientific Bulletin. Series: Economics, vol. 10, pp. 135–142.

Kenneth J. (Jul., 1954) Arrow and Gerard Debreu. Existence of an Equilibrium for a Competitive Economy. Econometrica, vol. 22, no. 3, pp. 265–290.

Scarf H. (1960) Some examples of global instability of the competitive equilibrium. International Economic Review, vol. 1, no. 3.

Johansen S. (2006) Statistical analysis of hypotheses on the cointegration relations in the I(2) model. Journal of Econometrics, no. 132, pp. 81–115.

Prysenko H. V., Ravikovych Ye. I. (2005) Prohnozuvannia sotsialno-ekonomichnykh protsesiv: Navch. posibn. Kyiv: KNEU, 378 p.

Zhluktenko V. I., Tarasova L. H., Ihnatova Yu. V. (2014) Stokhastychni protsesy ta modeli v ekonomitsi: Navch. Posib. Kyiv: KNEU, 230 p.

Bilousova T. P. (2023) Equilibrium price on the market of one good. Evans model. Taurian Scientific Bulletin. Series: Economics, vol. 16, pp. 9–14.

Debela I. M. (2021) Baiiesivskyi metod otsinky alternatyvnykh rishen. Taurian Scientific Bulletin. Series: Economics, vol. 8, pp. 76–81.

Finn E. Kydland and Edward C. Prescott (Nov., 1982) Time to Build and Aggregate Fluctuations. Econometrica, vol. 50, no. 6, pp. 1345–1370.

Cantore C., León-Ledesma M., McAdam P., Willman A. (2010) Shocking Stuff: Technology,Hours, and Factor Substitution. Working Paper 1278. European Central Bank. Available at: http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1278.pdf

Article views: 98
PDF Downloads: 38
Published
2024-05-31
How to Cite
Bilousova, T. (2024). GENERAL ECONOMIC EQUILIBRIUM MODELS . Taurida Scientific Herald. Series: Economics, (20), 38-42. https://doi.org/10.32782/2708-0366/2024.20.4